
Parasitic Helminths: New Perspectives in Biology and Infection

Hotel Bratsera, Hydra, Greece

3 -8 September 2023

The Hydra Conference 2023 has been generously supported by:

Burroughs Wellcome Fund, USA eLife Merck Global Health Institute, Switzerland New England BioLabs, Ipswich, Massachusetts, USA Trends in Parasitology, Cell Press Wellcome Centre for Integrative Parasitology, University of Glasgow, UK

ORGANISERS, 2023

Amy Buck (University of Edinburgh, UK) Jim Collins (University of Texas Southwestern, USA) Richard E Davis (University of Colorado, USA) Kleoniki Gounaris (Imperial College London, UK) Rick Maizels (University of Glasgow, UK) Murray Selkirk (Imperial College London, UK),

Beautiful Cover Photos of Hymenolepis dimunuta are courtesy of Tania Rozario, University of Georgia, USA!

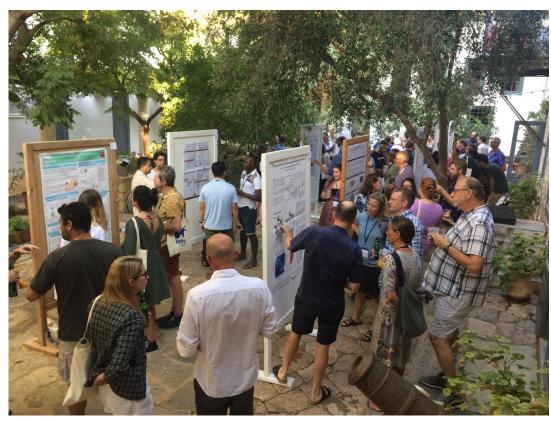
Parasitic Helminths - New Perspectives in Biology and Infection

3 – 8 September 2023, Hydra, Greece

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday
	3 September	4 September	5 September	6 September	7 September	8 September
	ARRIVE	Session 1 Host-	Session 4 Evolution	Session 7	Session 10	DEPART
	AKKIVE	Parasite Interactions and Ecosystems		Human Infection	Helminth Development	DEPARI
9:00		Maria Duque-Correa	Amy Pedersen	Moses Egesa	Tania Rozario	
9:40		Omer Bay	Mark Viney	Emma Houlder	David Mangelsdorf	
10:00		Simone Haeberlein	Lewis Stevens	Bridgious Walusimbi	Christoph Grevelding	
10:20		Kerstin Fischer	Grace Ajakaye	Cornelis Hokke	Jan Dvorak	
10:40-11:1	LO		Coffee Break			
		Session 2 Immune	Session 5	Session 8	Session 11	
		Effector Mechanisms	Helminth Immunology	Immune Activation	Immunomodulation	
11:10		Lida Derevnina	Minka Breloer	Michalis Barkoulas	Thomas Nutman	
11:30			Shinjini Chakraborty		Shashi Singh	
11:50		Unnati Sonawala	Georgios Petrellis	Lara Linnemann	Katherine Smith	
12:10		Alexandra Ehrens	Oyebola Oyesola	Pedro Papotto	Peter Nejsum	
12:30		Nicolas Pionnier	Dionysis Grigoriadis	Kyle Cunningham	Clarissa Prazeres da Costa	
13:00-			WormBase Parasite			
14:00			Workshop			
to 16:00		Γ	Afternoon Break			
		Session 3	Session 6	Session 9	Session 12	
		Drug Development	Type 2 Immunity	Drug Resistance	Non-coding RNAs	
16:00		Andrew Fraser	De'Broski Herbert	Ray Kaplan	Vicky Hunt	
16:20		Daniel Sprague		Anne Lespine	-	
16:40	Registration Opens	Hala Fahs	Pedro Gazzinelli-Guimaraes	Stephen Doyle	Murilo Amaral	
17:00	at Bratsera Hotel	Wannaporn Ittiprasert	Xinxin Luo	Sarah Cobb	Amy Buck	
17:20		Poster Pitches 1-17	James Hewitson	Poster Pitches 18-35	End of Session	
18:00	Opening Drinks (18:45)					
19:45	Keynote: Maria	Poster Session 1	Vlychos Taverna	Poster Session 2	Bratsera Farewell	
	Yazdanbakhsh		Dinner		Dinner	
21:00	Welcome Dinner	20:00 End of Session	(Boat leaves 19:00)	20:00 End of Session	(20:30)	
	Bratsera Hotel				(20.00)	

Parasitic Helminths – New Perspectives in Biology and Infection

2023 Programme


Sunday 3 September

16:00 Registration Opens, Bratsera Hotel

18:45 Pre-lecture Drinks

19:45 Keynote Lecture, Maria Yazdanbakhsh Chair: Murray Selkirk

21:00 Welcome Dinner, Bratsera Hotel

Poster Session 2019

Monday 4 September

09:00	Maria Duque- Correa	Cambridge, UK	Unravelling the whipworm niche at the host intestinal epithelia
09:40	Omer Bay	Manchester, UK	The first genome-scale metabolic model of parasitic whipworm: gateway to the rapid discovery of novel host pathogen interactions and therapeutic targets
10:00	Simone Haeberlein	Giessen, DE	Combined single-cell and spatial transcriptomics provide unprecedented molecular insights valuable for basic and applied research on liver flukes
10:20	Kerstin Fischer	Washington, USA	Deep visual proteomics of the protein inventory of <i>Onchocerca volvulus</i> neoplasms

09:00-10:40 Session 1. Host-Parasite Interactions. Chair Niki Gounaris

10:40 – 11:10 Coffee Break

11:10 – 12:50 Session 2. Immune Effector Mechanisms. Chair Rick Maizels

11:10	Lida Derevnina	Cambridge, UK	Cyst nematodes counteract immunity by inhibiting activation of central nodes of a Solanaceae immune receptor network
11:50	Unnati Sonawala	Cambridge, UK	Understanding the HYPervariability of HYP effectors in potato cyst nematodes
12:10	Alexandra Ehrens	Bonn, DE	Microfilariae-induced eosinophil ETosis is NOX- and inflammasome-dependent
12:30	Nicolas Pionnier	Manchester, UK	Natural Killer cell activation and memory-like phenotype development following helminth infection

16:00 – 18:00 Session 3. Drug Development. Chair Thomas Spangenberg

16:00	Andrew Fraser	Toronto, CA	Closing in on new anthelmintics that target rhodoquinone-dependent metabolism	
16:20	Daniel Sprague	Wisconsin, USA	Developing novel flatworm ion channel ligands to treat various neglected tropical diseases	
16:40	Hala Fahs	New York, USA	Multi-species nematode screening uncovers new classes of broad-spectrum anthelmintic compounds.	
17:00	Wannaporn Ittiprasert	Washington, USA	All-in-one lipid nanoparticle delivery of programmed gene knock-in in <i>Schistosoma mansoni</i>	
17:20	Poster Pitches 1-17 (2-minutes each)			

18:00 – 20:00 Poster Session, Posters 1-17

09:00	Amy Pedersen	Edinburgh, UK	The ecological drivers of helminth infection and immunity in a lab-to-wild mouse model
09:40	Mark Viney	Liverpool, UK	Is Strongyloides stercoralis in people a zoonosis from dogs? – a whole-genome sequencing approach
10:00	Lewis Stevens	Wellcome Sanger, UK	Ancient diversity in host-parasite interaction genes in a model parasitic nematode
10:20	Grace Ajakaje	Adekunda, Nigeria	Proof-of-concept multilocus sequence typing scheme to investigate hybridization in <i>Schistosoma haematobium</i>

9:00 – 10:40 Session 4. Evolution and Ecosystems. Chair Amy Buck

11:10 – 12:50 Session 5. Helminth Immunology. Chair Richard Grencis

11:10	Minka Breloer	BNITM, DE	CD160 regulates innate anti-helminth immune responses
11:30	Shinjini Chakraborty	York, UK	Chronic helminth infection alters bone marrow
11:50	Georgios Petrellis	Liege, BE	haematopoiesis via IL-4 IL-4 receptor-α signaling regulates lung macrophages during helminth coinfection resulting in enhanced gammaherpesvirus permissiveness
12:10	Oyebola Oyesola	LPD/NIH, USA	Helminth exposure protects against murine SARS- CoV-2 infection through macrophage dependent T cell activation.
12:30	Dionysis Grigoriadis	EMBL-EBI, UK	WormBase ParaSite in 2023
13:00 -	WormBase		
14:00	Parasite Workshop		

16:00 – 17:40 Session 6. Type 2 Immunity. Chair Katie Smith

16:00	De'Broski Herbert	Pennsylvania, USA	Skin sensory neurons repel schistosomiasis
16:40	Pedro Gazzinelli- Guimaraes	NIAID/NIH	Decoding at single cell resolution the molecular and functional program of pathogenic Th2 cells subsets in humans
17:00	Xinxin Luo	Karolinska, SWE	Liver X receptor controls Tuft cell-ILC2 circuit impairing anti-helminth immunity
17:20	James Hewitson	York, UK	Platelet-immune cell cross-talk in the type 2 inflammatory response to <i>Schistosoma mansoni</i>

19:00 Boat Trip and Vlychos Taverna Dinner

09:00 – 10:40 Session 7. Human Infection. Chair Padraic Fallon

09:00	Moses Egesa	MRC/UVRI/ LSHTM Uganda	Establishing a single sex <i>Schistosoma mansoni</i> controlled human infection model for Uganda
09:40	Emma Houlder	Leiden, NL	Immune responses in controlled human Schistosoma mansoni infection, lessons from single and reinfection studies.
10:00	Bridgious Walusimbi	MRC/UVRI/ LSHTM Uganda	Are the effects of helminth infection and urbanisation on one's cardiovascular risk mediated via the gut microbiome?
10:20	Cornellis Hokke	Leiden, NL	In-depth characterisation of <i>Brugia malayi</i> glycosylation and unraveling of cross-reactive anti- glycan antibody responses in filarial nematode infections

11:10 – 12:50 Session 8. Immune Activation. Chair Oyebola Oyesola

11:10	Michalis	Imperial	<i>C. elegans</i> as a tractable host to study natural
	Barkoulas	College UK	infections by oomycetes
11:50	Lara Linnemann	BNITM, GER	Characterization of the regulative role of the C-type
			lectin receptor MINCLE in the initiation of anti-
			helminth immune responses
12:10	Pedro Papotto	Manchester,	Dermal $\gamma\delta$ 17 T cells orchestrate innate and adaptive
		UK	immunity in distal organs during nematode infection
12:30	Kyle	Glasgow, UK	A family of helminth-derived TGF-β mimics provide
	Cunningham		key insights to innate and adaptive immune cell
			activation

16:00 – 17:20 Session 9. Drug Resistance. Chair Murray Selkirk

16:00	Ray Kaplan	St George's, West Indies	Molecular evidence of widespread benzimidazole drug resistance in <i>Ancylostoma caninum</i> from domestic dogs throughout the USA and discovery of a novel isotype-1 β-tubulin benzimidazole resistance mutation
16:20	Anne Lespine	INRAE, FR	Role of nematode ABCB transporters and their regulation in anthelmintic resistance
16:40	Stephen Doyle	Sanger, UK	Genomic landscape of drug response reveals mediators of anthelmintic resistance
17:00	Sarah Cobb	Texas, USA	Understanding the basic biology of juvenile schistosomes by studying stem cells

17:20

Poster Pitches 18-34 (2-minutes each)

18:00 – 20:00 Poster Session 2, Posters 18-35

Thursday 7 September

9:00 – 10:40 Session 10. Helminth Development. Chair Jim Collins

09:00	Tania Rozario	Athens, Georgia, USA	Understanding signals that regulate stem cells and germ cells in the regeneration-competent neck of the rat tapeworm, <i>Hymenolepis</i> <i>diminuta</i>
09:40	David Mangelsdorf	Texas, USA	The nuclear receptor paradigm of infection in parasitic nematodes
10:00	Christoph Grevelding	Giessen, DE	Single-cell transcriptomics of <i>Schistosoma</i> <i>mansoni</i> oocytes identifies a retinoid acid receptor essential for meiosis entry, zygote development, and egg formation
10:20	Jan Dvorak	Czech University	Egg-cellent insights: Transcriptomic analysis of <i>S. mansoni</i> egg development – winners vs. losers

11:10 – 12:50 Session 11. Immunomodulation. Chair Minka Breloer

11:10	Thomas Nutman	NIAID/NIH	A filarial parasite-encoded IL-5 antagonist suggests a novel strategy used by helminths to modulate host responses
11:30	Shashi Singh	Glasgow, UK	Transforming growth factor beta (TGFβ) mimic 4 (TGM4) of <i>Heligmosomoides polygyrus</i> targets myeloid cells through TGFβ receptors and multiple coreceptors
11:50	Katherine Smith	Cardiff, UK	Greedy Worms: manipulating PUFA metabolism to survive and influence host immunity
12:10	Peter Nejsum	Aarhus, DEN	Ascaris suum extracellular vesicles target human monocytes to generate a unique phenotype affecting T-cell anergy
12:30	Clarissa Prazeres da Costa	Munich, DE	Helminthic glutamate dehydrogenase- dependent PGE2 production in monocyte and microglia potentiates Treg development with distinct transcriptional profiles

16:00 – 18:00 Session 12 Non-coding RNAs. Chair Dick Davis

16:00	Vicky Hunt	Bath, UK	The role of secreted exosome-like vesicles in parasite-host interactions and potential as a biomarker in <i>Strongyloides</i> infection
16:40	Murilo Amaral	Sao Paolo, BRA	Schistosomal extracellular vesicle-enclosed long non-coding RNAs are transferred to the mammalian host
17:00	Amy Buck	Edinburgh, UK	RNA communication in helminth-host interactions

20:30 Bratsera Farewell Dinner

MARIA YAZDANBAKHSH

Leiden University Center of Infectious Diseases, Leiden, The Netherlands

Maria Yazdanbakhsh studied Parasitology at London School of Hygiene and Tropical Medicine and her PhD (Amsterdam University) and her postdoc (Imperial college London) involved studies of helminth infections. She is currently heading the Parasitology department at Leiden University Medical Center in the Netherlands. Her group is interested in the interaction between the immune system and helminths. Through many collaborations with researchers in low and middle income countries, her group has been able to combine field studies with cutting edge technologies to profile the human immune system in areas where helminth infections are highly endemic. Conducting trials with anthelmintics, the contribution of current helminth infections to modulation of the immune system has been studied. More recently, her group has become interested in establishing and immune profiling of controlled human helminth infections in

her department. Her lab studies the impact of a modulated immune system not only on inflammatory diseases but also on vaccine responses to be able to identify pathways that can be modulated for better control of inflammation and vaccine responses.

Helminth infections and the immune system: from field studies and controlled human infection trials

Our textbook knowledge of the immune system relies largely on studies conducted in laboratory mice or humans living in affluent regions of the world, where exposure to microorganisms and parasites, in particular to helminths, is low. In many low-income regions of the world, helminth infections are the norm and in many areas 100% of communities can be infected with helminths, which profoundly affects the immune system and its function. Studies in populations living in areas endemic for helminth infections have shown strong type 2 and regulatory immune responses that in part can be driven by helminth-derived molecules. In the same areas, lower frequencies of naïve cells along with highly differentiated innate and adaptive immune cells expressing inhibitory molecules appear to be the norm. Such immune profiles seem to be associated with lower prevalence of allergic diseases, less severe COVID-19, but also poorer responses to some vaccines. Whether helminths alone, or other environmental factors are responsible for a modulated immune system that controls responses to incoming allergens or antigens in a vaccine, might be addressed by studying the immunological perturbations during controlled human helminth infections. In such studies, the precise time of infection and the load can be controlled, and the immune response can be followed up longitudinally. Moreover, in the future, it might be possible to assess the response of these helminth infected volunteers to allergens and vaccines. Currently, the use of mass cytometry and single cell transcriptomics of samples from individuals exposed to helminths in endemic areas and those undergoing controlled helminth infection, are providing us with granular data on how the environment and helminth infections shape the immune system, with the hope to identify pathways that can be used to suppress inflammation or boost vaccine responses.

MARÍA A. DUQUE-CORREA

Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, UK.

Dr Maria Duque-Correa completed her studies of Biology at the University of Antioquia in Colombia, where her undergraduate thesis focused on the role of macrophage activation in Mycobacterium tuberculosis control. She then went to the Mayo Clinic in Arizona, USA to work as a research associate in projects investigating the effect of age on macrophage and dendritic cell responses during cancer. Afterwards, Dr Duque-Correa undertook a PhD at the Max Planck Institute for Infection Biology in Berlin, Germany. Her PhD thesis studied the role of macrophage arginase in granuloma immunopathology during M. tuberculosis infection. For her postdoctoral studies, Maria joined the Wellcome Sanger Institute where she investigated host-parasite interactions that drive immune responses to whipworms (Trichuris sp).

During her postdoc, Maria was funded first by a Marie Sklodowska-Curie fellowship and then, by a transition to independence David Sainsbury Fellowship from the National Centre for the Replacement, Refinement and Reduction of Animals in Research. Awarded a Wellcome Sir Henry Dale Fellowship, Maria started her own research group at the Cambridge Institute of Therapeutic

Immunology and Infectious Disease at the University of Cambridge in January 2022 and joined the Wellcome-MRC Cambridge Stem Cell Institute as Principal Investigator in September 2022.


Unravelling the whipworm niche at the host intestinal epithelia

Whipworms (Trichuris trichiura) infect hundreds of millions of people causing trichuriasis, a major neglected disease. Whipworms are large metazoan parasites that inhabit a multi-intracellular niche within their host caecal epithelia, where they manipulate mucosal physiology and inflammation through interactions with the intestinal epithelial cells and stem cell niche. These interactions enable chronic infections where whipworms are tolerated for years; but at a mechanistic level, how they operate is not understood. My research aims to define these interactions and bring a mechanistic understanding to how they underpin whipworm invasion, colonisation, and persistence in their mucosal niche. To address this aim, my lab employs a combination of in vivo and in vitro (using caecaloids) models of Trichuris muris infection and imaging and transcriptomic analysis. Using these models, we have shown that T. muris first-stage (L1) larvae degrade mucus layers to access epithelial cells. In early syncytial tunnels, larvae are completely intracellular, woven through multiple live dividing cells. Moreover, using single-cell RNA sequencing of infected mouse caecum and caecaloids, we revealed that progression of infection results in cell damage and an expansion of enterocytes expressing of *Isq15*, potentially instigating the host immune response to the whipworm and tissue repair. Excitingly, we have now maintained whipworminfected caecaloids for 24 days and have observed growth and moulting of whipworms up to the L4 stage at times after infection akin those in vivo. These results suggest whipworm-infected caecaloids can successfully support the in vitro life cycle T. muris, opening new opportunities to study host intestinal epithelial interactions with whipworms through infection, while reducing the number of animals required for these studies. Collectively, our research will unravel intestinal epithelium invasion by whipworms and reveal specific host-parasite interactions that allow the whipworm to establish and persist in its multiintracellular niche.

LIDA DEREVNINA

Crop Science Centre, Department of Plant Sciences, University of Cambridge, UK

Lida obtained her PhD in plant breeding and plant pathology from the University of Sydney, Australia, where she identified and characterized rust resistance genes in cultivated barley. After completing her PhD, she joined the University of California, Davis, USA, as a postdoctoral researcher, working in comparative genomics of downy mildews. Following this, Lida was awarded a Marie Skłodowska-Curie independent fellowship at The Sainsbury Laboratory (TSL) in Norwich, UK, to study plant intracellular immune receptor networks. Lida is currently the head of the Crop Pathogen Immunity group at the Crop Science Centre, Department of Plant Sciences, University of Cambridge, UK. Her research primarily revolves around understanding the molecular mechanisms employed by pathogens to disrupt plant immune receptor function.

Cyst nematodes counteract immunity by inhibiting activation of central nodes of a Solanaceae immune receptor network

Mauricio P. Contreras¹, Hsuan Pai¹, Muniyandi Selvaraj¹, AmirAli Toghani¹, David M. Lawson², Yasin Tumtas³, Cian Duggan³, Enoch Lok Him Yuen³, Clare E.M. Stevenson², Adeline Harant, Abbas Maqbool², Chih-Hang Wu⁴, Tolga O. Bozkurt³, Sophien Kamoun¹ and Lida Derevnina^{1†}

¹The Sainsbury Laboratory, University of East Anglia, Norwich, UK; ²Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK; ³Department of Life Sciences, Imperial College, London, UK; ⁴Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan[†]; [†]Present address: Crop Science Centre, Department of Plant Sciences, University of Cambridge, UK

During infection, plant pathogens deploy virulence proteins, termed effectors, that suppress plant immune responses and promote disease. Despite their important role in pathogenicity, our understanding of the mechanisms underlying effector function remain relatively limited. We previously identified SS15 – a SPRYSEC-type effector derived from the potato cyst nematode *Globodera rostochiensis* – as a potent suppressor of immunity in Solanaceous plants. SS15 targets the function of helper NLRs, namely NRC2 and NRC3, that are central nodes of a complex immune signalling network. Using biochemical and cellular approaches, we demonstrate that SS15 binds to and inhibits NRC2 oligomerization and plasma membrane association, which are critical for immune signalling. To overcome this suppression, we introduced mutations in the SS15-NRC2 binding interface and bioengineered an NRC2 variant that evades inhibition and restores NRC2 function in the presence of SS15. Our work exemplifies how a deeper mechanistic understanding of effector biology can provide valuable insights for developing novel strategies to generate disease resistant crops.

AMY B. PEDERSEN

University of Edinburgh; Edinburgh, UK

Amy Pedersen is a Professor of Disease Ecology at the University of Edinburgh. The central aim of her research is to better understand how parasites and pathogens impact the fitness and dynamics of their wild hosts, specifically by recognising and understanding the complexities that are inherent in natural This systems. novel approach is important, as while laboratory-based mouse models continue to be crucial to our understanding of infection and immunity, there are many aspects of the controlled setting that don't capture the complexity of human ecology and natural systems. Pedersen has

developed a lab-to-wild mouse – parasite system to better understand what factors determine infection and immunity, and importantly how we can improve disease control strategies.

The ecological drivers of helminth infection and immunity in a lab-to-wild mouse model

Despite great concern about the current global health threat of infectious diseases in humans and domestic animals, we still don't have a clear understanding about how ecological heterogeneity determines infection burdens, disease, transmission, or how to successfully control infections in variable populations. Most drug treatments and vaccines are selected using data from laboratory animal systems such as inbred mice. Our over-reliance on highly controlled, laboratory models may underlie some of our failures to adequately manage disease burdens in real-world settings. We have established a wild-to-lab mouse model in order to investigate the causes and consequences of ecological heterogeneity for hostparasite interactions and disease control. Specifically, this talk will focus on *Heligomosoides polygyrus* and its natural host, wood mice (Apodemus sylvaticus) and addresses the following questions: (i) what determines susceptibility and resistance to *H. polygyrus* in the wild? (ii) how does nutritional quality and gut microbiome composition impact *H. polygyrus* infection and immunity? (iii) can we use this lab-to-wild system to test helminth vaccine efficacy and better understand the immune and non-immune pathways that drive chronic helminth infections in the wild? From a series of field and controlled laboratory infection and coinfection experiments, I will show evidence that nutritional availability significantly impacts *H. polygyrus* infection and immunity in the wild and lab. In addition, I will present recent results that demonstrate that the composition of the gut microbiome may impact H. polygyrus establishment and resistance. Lastly, I will present recent results suggesting that possible helminth vaccine candidates (e.g. HES and ExWAGO) show evidence of efficacy in this system, but also highlight significant variation in efficacy between individuals. Our results highlight how pairing both the lab and natural setting provides a unique and powerful opportunity to understand the causes and consequences of ecological heterogeneity on infection, immunity and disease control.

DE'BROSKI R HERBERT

University of Pennsylvania, Philadelphia, USA

Dr. De'Broski R Herbert's career has spanned 4 research institutions across two major continents: University of Cape Town, South Africa (2000-2006),University of *Cincinnati/Cincinnati* Children's Hospital Medical Center (2006-2012), University of California at San Francisco (2012-2016) and the University of Pennsylvania (2016-present). The over-arching goal of the Herbert research program is to use parasitic organisms as a guide to investigate basic mechanisms of host immunity, inflammation and wound healing. Most of this work has focused on the immune response to parasitic helminths, organisms that are the likely evolutionary driving force for Type 2 immunity. Helminths are a major cause of disease in impoverished populations (~2-3 billion people) and biomedical research focused on parasitic helminths has been a fertile ground for scientific discovery. In general, helminths such as hookworms pose a formidable challenge to the host immune system regarding their large size, morphological complexity and the host

tissue niches they occupy. While infectious larval stages can cause tremendous damage to host tissues as they invade and migrate, the hematophagous nature of adult stages can cause persistent injury during feeding. Surprisingly, most helminth species can survive for years, even decades in their hosts due to a variety of mechanisms including those that suppress and evade host immunity. Given this complex biology, research projects based in the Herbert lab focus on the mechanisms that initiate Type 2 responses, those that drive tissue repair, and requirements for host protective immunity at the sites where worms invade and reside (e.g., skin, respiratory tract, and intestine).

Skin sensory neurons repel schistosomiasis

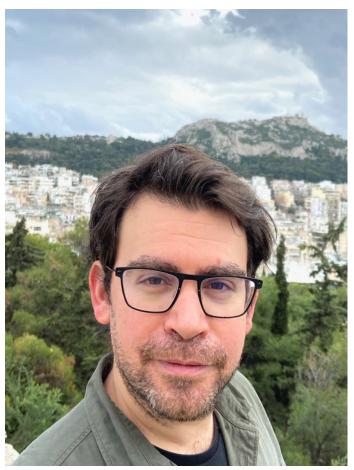
Schistosoma spp. cause morbidity and mortality in over 250 million people worldwide. The infectious larval stage (cercariae) enters the host through direct skin penetration. This study demonstrates that activation of itch-sensing neurons bearing the Mas-related G protein receptor A3 (A3) selectively suppressed the ability of myeloid antigen presenting cells (APC) to express the pleiotropic cytokine IL-33. Activated A3 neurons stimulated macrophage TNF production, increased IL-17-expressing $\gamma\delta$ T cells, increased epidermal thickening, and drove resistance to the human pathogen *Schistosoma mansoni*, partially through the neuropeptide calcitonin gene related peptide (CGRP). Accordingly, cell-intrinsic deletion of IL-33 in myeloid APC basally altered chromatin accessibility at inflammatory cytokine loci, promoted the release of IL-17-inducing cytokines (e.g., IL-1 β , IL-6), and induced both tissue pathology (e.g., epidermal thickening, keratinocyte hyperplasia) and host resistance to helminth infection. Our findings suggest a previously undescribed mechanism of cellular cross- talk wherein "itch" neuron activation alters myeloid cytokine expression patterns to reshape skin architecture and drive cutaneous immunity against *Schistosoma mansoni*.

MOSES EGESA

MRC/UVRI and LSHTM Uganda Research Unit

Dr Moses Egesa is a Research Fellow at the MRC/UVRI and LSHTM Uganda Unit. Не received his Ph.D. (parasite immunology) from ßMakerere University, Uganda in 2020. Dr Egesa mainly works on the immunology of schistosomiasis. His overarching research goal is to contribute to the development of effective vaccines for schistosomiasis in Africa. He is an EDCTP Career Development Fellow characterizing protein and glycan epitopes recognised following controlled infection human with Schistosoma mansoni in an endemic population. The EDCTP fellowship builds on his contributions as the Project Lead for the Wellcome-funded programme "Establishing a single sex S. mansoni controlled human infection model for Uganda" (PI Prof. Alison Elliott, Co-PI Prof. Meta Roestenberg, and Co-PI Prof. Afzal

Siddiqui). He is a co-investigator on various local and international collaborative schistosomiasis research grants with Infectious Diseases Institute (PI Prof. Ponsiano Ocama, NIH funding), Leiden University Medical Center (PI Prof. Meta Roestenberg, HIC-Vac Network funding), and University of York (PI Dr James Hewitson, GCRF funding).


Establishing a single sex Schistosoma mansoni controlled human infection model for Uganda

Schistosomiasis is widespread in Uganda affecting 86% of its districts. The control programme in the country is grounded on a single drug, praziquantel. This has had little effect on high reinfection rates and worries of drug resistance are emerging. An effective vaccine could refresh the control efforts, but no vaccine exists for schistosomiasis in the field. More recently, there is growing interest in controlled human infection studies (CHI) to accelerate vaccine development. A CHI for schistosomiasis was developed in the Netherlands. We are developing a CHI for *Schistosoma mansoni* in in endemic Uganda where responses to infection and vaccines differ in target populations. Here, we discuss the progress covering scientific, ethical, and regulatory aspects with a focus on challenges and opportunities in establishing the first single sex *Schistosoma mansoni* controlled human infection model in an endemic setting.

MICHALIS BARKOULAS

Department of Life Sciences, Imperial College, London, United Kingdom

Michalis Barkoulas is a Reader (Associate Professor) at the Department of Life Sciences at Imperial College London. He started with a PhD and postdoctoral research in plant development in the Tsiantis lab at the University of Oxford, investigating how auxin gradients sculpt the dissected leaf shape. In 2009, he became a postdoctoral fellow in the Felix lab at the Ecole Normale Superieure in Paris where he was introduced to C. elegans and addressed how quantitative perturbations of EGF and Notch signalling pathway activity influence cell fate patterns and developmental system robustness. He was then recruited in 2013 to start his own lab as a Lecturer in the Department of Life Sciences at Imperial College London. The Barkoulas lab address fundamental questions on the genotype-to-phenotype relationship and the molecular mechanisms underlying biological robustness. Recent work has focused on the resilience of epidermal development in C. elegans, an essential tissue growth and biotic/abiotic for stress

protection, to various perturbations including stochastic, genetic, environmental variation and more recently to infection by natural pathogens.

C. elegans as a tractable host to study natural infections by oomycetes

Manish Grover, Ken Liu, Jonathan Saunders, Florence Drury, Mark Hintze, and Michalis Barkoulas

Oomycetes are a diverse group of eukaryotic organisms that superficially resemble fungi and can cause plant and animal disease. While plant-infecting oomycetes have been widely studied, research on animal-infecting species has been limited by the lack of genetically tractable model hosts. We have recently discovered oomycete species as common natural pathogens of the model nematode *Caenorhabditis elegans*. We have found that *C. elegans* can sense the presence of oomycetes to mount a pathogen-specific protective transcriptional response in the epidermis. This response consists of the induction of a previously uncharacterised gene family of chitinase-like (*chil*) genes, which provides partial resistance to infection by reducing pathogen attachment to the nematode cuticle. I will describe these new pathosystems and discuss recent efforts aimed at dissecting the signalling pathway underlying *chil* gene induction using comprehensive forward genetic screens. Our results illustrate how different tissues in nematodes share signals to orchestrate the host defence response against their natural pathogens.

TANIA ROZARIO

Department of Genetics and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30606, USA

Tania Rozario got her PhD from the University of Virginia studying embryonic development. During her postdoc she joined Phil Newmark's lab (Morgridge Institute for Research) to study planarian regeneration but pivoted toward their parasitic cousins- tapeworms. Her work (re)established the rat tapeworm, Hymenolepis diminuta, as a nontraditional model to explore the molecular mechanisms that govern how tapeworms grow, regenerate, and reproduce at prolific rates. In 2021, she established her independent lab at the University of Georgia where her work understanding extrinsic and intrinsic signals that regulate tapeworm stem cells continues.

Understanding signals that regulate stem cells and germ cells in the regeneration-competent neck of the rat tapeworm, *Hymenolepis diminuta*.

Tapeworms grow at rates that rival all metazoan tissues, including during embryonic and neoplastic growth. The rat tapeworm, *Hymenolepis diminuta*, produces up to 2,200 proglottids, increasing in length up to 3,400 fold, and weight up to 1.8 million fold within the first 15 days of infection. Tapeworms can also regenerate: they shed large parts of their body, releasing their embryos to continue their life cycle, yet are able to continuously replenish proglottids and maintain an equilibrium length. Such remarkable growth, regeneration, and reproduction are fueled by adult somatic stem cells. Using H. diminuta as a laboratory model, we find that regeneration is limited to the tapeworm neck. Using transcriptomic analyses and RNA interference (RNAi) we functionally validated the first molecular regulators of tapeworm stem cells. However, we find no evidence that stem cells are restricted to the regenerationcompetent neck. Instead, we find that lethally irradiated tapeworms can be rescued from death when cells from both regeneration-competent and regeneration-incompetent regions are transplanted into the neck, suggesting that stem cells may be maintained throughout the whole body while the extrinsic signals that make up the neck microenvironment are crucial for regeneration. Preliminary results suggest that the head plays at least two important functions: maintaining neck identity and regulating stem cell proliferation. The microenvironment of the neck is highly patterned along the anterior-posterior axis by Wnt signaling components among other factorsthat we are now characterizing. In addition, the neck is also responsible for regulating the germ cell niche though *ebony*-dependent signaling. Together, the head and neck tissue provide a microenvironment that enables region-specific regeneration in this tapeworm.

VICKY HUNT

University of Bath, UK

Vicky Hunt is a Wellcome Trust fellow at the University of Bath. She previously held a JSPS fellowship at the University of Miyazaki, Japan, in Taisei Kikuchi's lab, and an Elizabeth Blackwell Institute early career fellowship and postdoc position at the University of Bristol in Mark Viney's lab. Her research is mainly focused on understanding genomics the and genetics of the gastrointestinal nematode parasite Strongyloides spp. *Current projects include investigating the* role of small RNAs, gene organisation, mechanisms regulatory and transposable elements in parasitism.

The role of secreted exosome-like vesicles in parasite-host interactions and potential as a biomarker in *Strongyloides* infection

The gastrointestinal parasites *Strongyloides ratti* and *S. venezuelensis* secrete exosome-like vesicles (ELV) during infection. The ELVs, packaged with a cocktail of small RNAs and proteins, are taken up by host epithelial cells *in vitro* where they are predicted to target and manipulate the host environment. We report that the majority of small RNA sequences in ELVs are 'extra small' between 7-15 nucleotides in length ('xsRNAs'). We propose that xsRNAs are a common ELV- associated feature and demonstrate that similar types of xsRNA are also dominant in ELVs secreted by other nematodes. We predict the genes that are targeted and repressed at the posttranscriptional level by xsRNAs. *S. ratti* and *S. venezuelensis* xsRNAs are predicted to target genes in the rat host genome. We hypothesise that xsRNAs, in combination with ELV-bound proteins such as acetylcholinesterase, work together to target the peristalsis response in the host for the benefit of the parasite. Using 11.5 day old mouse embryo intestines we have developed an *ex vivo* model for peristalsis and confirm that secretions from *S. ratti* alter the rate of peristalsis. In addition to understanding the biological role of secreted small RNAs in *Strongyloides*, we also investigate their potential as biomarkers. Small RNAs including xsRNAs can be readily detected in faecal samples and have potential as a novel method for gastrointestinal parasite diagnostics.

1	Kelsilandia AGUIAR MARTINS	Royal Veterinary College - University of London	Genetic analysis of <i>Schistosoma mansoni</i> pre-and post- treatment from a high morbidity (FibroSchot) hotspot within Lake Albert, Uganda.
2	Annia ALBA	University of Perpignan	How the environment influences the transmission of zoonotic diseases: linking abiotic and biotic factors to the vectorial capacity of an intermediate host snail
3	Georgia BALDWIN	University of Manchester	Ym1 as a Regulator of IL-17
4	Luke BECKER	Malaghan Institute of Medical Reasearch	Methods for the evaluation of the viability and infectivity potential of reanimated cryopreserved hookworm larvae used for human therapy.
5	Ilaria BELLINI	Sapienza University of Rome	Exploring pathogenicity and tumorigenic potential of the nematode <i>Anisakis</i> using human intestinal organoids and extracellular vesicles
6	Sarah BUDDENBORG	Wellcome Sanger Institute	Optimisation of single cell, nuclei, and spatial RNA-seq in nematodes
7	Geraldine BUITRAGO	University of Strathclyde	The parasitic worm product ES-62 protects the osteoimmunology axis in a mouse model of obesity-accelerated ageing.
8	Alice COSTAIN	University of Manchester	Tissue damage and microbiota modifications provoke intestinal Type 2 immunity during <i>Schistosoma mansoni</i> infection
9	Padraic FALLON	Trinity College Dublin	Retinoic acid-related orphan receptor alpha (RORα) is required for generation of Th2 cells during <i>Nippostrongylus brasiliensis</i> infection
10	Peter FISCHER	Washington University School of Medicine	A Paragonimus kellicotti cysteine protease recognized by IgG4 antibodies of infected humans is found in extracellular vesicles produced by the parasites in vitro and in the lung cysts
11	Sandra GAVA	Oswaldo Cruz Foundation, Fiocruz	The effect of Aspartyl Proteases Cathepsin D-like knockdown in <i>Schistosoma mansoni</i> schistosomula and adult worms
12	Richard GRENCIS	University of Manchester	Neutrophil modulation of immunity during chronic intestinal helminth infection: Haptoglobin regulation of B cell responses
13	Amber HADERMANN	University of Antwerp	Onchocerciasis-associated epilepsy: the pathophysiological mechanism
14	Kelly HAYES	University of Manchester	Genetic manipulation of the parasitic nematode <i>Trichuris muris</i>
15	Malcolm KENNEDY	University of Glasgow	What mediators might the p43 immunomodulatory proteins of <i>Trichuris spp.</i> deliver to the infection site?
16	Xeusong LI	Justus-Liebig- University, Giessen	Identification of GPCR-neuropeptide interactions and their functional analyses in <i>Schistosoma mansoni</i>
17	Maria Cristina LOADER	St George's University London	Frequency of soil-transmitted infections in tuberculosis patients in the Peruvian Amazonian city of Iquitos and impact on markers of lung tissue destruction in TB- helminth co-infection

POSTER SESSION 2: WEDNESDAY 6 SEPTEMBER 6:00 – 8:00 PM

18	Kate MACLEAN	Malaghan Institute	Local vs systemic cytokine responses to human
		of Medical Research	hookworm infection in healthy adults
19	Marina de MORAES	FIOCRUZ- Fundação	Phenotypic screening of compounds identified by
	MOURÃO	Oswaldo Cruz	molecular docking targeting Schistosoma mansoni
			protein kinases
20	Javier MORA	University of Costa	The role of <i>Toxocara canis</i> third-stage larvae antigens in
		Rica	immune cell activation and induction of trained immunity
21	Max Frederik	Justus Liebig	Chromosomal integration of a reporter gene by RNA-
	MÖSCHEID	University Giessen	guided Cas-enzymes into a predicted genomic safe-
			harbor site of Schistosoma mansoni
22	Pia Franziska Marie	Justus Liebig	Insights into the molecular IgE-IPSE/alpha-1 interaction
	NAUJACK	University Giessen	responsible for basophil activation
		-	
23	Marina	University of	Geographic-specific variation in genomic diagnostics
	PAPAIAKOVOU	Cambridge	targets of soil-transmitted helminths
24	Daniel PARSONS	Kingston University,	Molecular epidemiology and evolution of antigen-coding
		London	genes from the multi-host parasite Schistosoma
			japonicum
25	Laudine PETRALIA	New England	Identification of species-specific glycan antigens of
		Biolabs, Inc.	Schistosoma haematobium
26	Rajalah Pradhu	Centre for	Structural characterization and protective response of
20	PRINCE	Biotechnology Anna	host non-homologous epitopes of <i>Wuchereria bancrofti</i>
	FRINCL	••	Thioredoxin
27		University, Chennai	
27	Ella REED	Cardiff University	A possible role for helminth-derived prostaglandin in
			regulating intestinal permeability and colitis-associated
	.		colorectal cancer development
28	Martina	Rostock University	Effects of 24-nor-ursodeoxycholic and ursodeoxycholic
	SOMBETZKI	Medical Center	acid on mitochondrial dynamics in the liver of
			Schistosoma mansoni infected mice
29	Camila SOUZA	National Institute of	Heterogeneity of immune response during
		Allergy and	schistosomiasis in inbred mouse strains
		Infectious Diseases	
30	Thomas	Merck Global Health	Identification of small molecules interacting with a
	SPANGENBERG	Institute, Eysins	microRNA present in extracellular vesicles of
			Schistosomes to study the host-parasite interaction
31	Shannan SUMMERS	London School of	Investigating the genetic diversity of the Schistosoma
		Hygiene and Tropical	mansoni Transient Receptor Potential Melastatin
		Medicine	(SmTRPM _{PZQ}) channel in response to praziquantel
			treatment in natural Ugandan S. mansoni populations
32	Franziska	Rostock University	Utilisation of 'Omics' to unmask the interactions of adult
	WINKELMANN	Medical Center	male and female Schistosoma mansoni with their host
33	Taoxun ZHOU	Низтрора	Macrophages release ovtracollular trans against
33		Huazhong	Macrophages release extracellular traps against
		Agricultural	Strongyloides stercoralis larvae via nuclear envelope
24	lean: 11.4: 7111 FA	University	budding
34	Isani Hubi ZULFA	SRUC, University of	The impact of co-infection on host resistance and
		Edinburgh	tolerance differs in mice of different genotypes
35	Laurens	Ghent University	Plant-based production of protective vaccine antigen
	ZWANENBURG		against the bovine abomasal parasite Ostertagia ostertagi

Hydra Delegates 2023

Kelsilandia	Aguiar Martins	University of London	kaguiarmartins@rvc.ac.uk	
Grace Oluwaremil	Aiakaya	Adekunle Ajasin University,	oluwaremilekun.ajakaye@aaua.	
ekun		Nigeria	eu.ng	
Annia	Alba	University of Perpignan	annia.alba@gmail.com	
Georgia	Baldwin	University of Manchester	georgia.baldwin@postgrad.man chester.ac.uk	
Michalis	Barkoulas	Imperial College London	m.barkoulas@imperial.ac.uk	
Ömer F	Вау	University of Manchester	omer.bay@manchester.ac.uk	
Luke	Becker	Malaghan Institute of Medical Reasearch	lbecker@malaghan.org.nz	
Ilaria	Bellini	Sapienza University of Rome	ilaria.bellini@uniroma1.it	
Matt	Berriman	University of Glasgow	matt.berriman@glasgow.ac.uk	
Minka	Breloer	Bernhard Nocht Institute for Tropical Medicine	breloer@bnitm.de	
Amy	Buck	University of Edinburgh	a.buck@ed.ac.uk	
Sarah	Buddenborg	Wellcome Sanger Institute	skb@sanger.ac.uk	
Geraldine	Buitrago	University of Strathclyde	geraldine.buitrago@strath.ac.uk	
Shinjini	Chakraborty	York Biomedical Research Institute	shinjini.chakraborty@york.ac.uk	
Sarah	Cobb	University of Texas Southwestern Medical Center	sarah.cobb@utsouthwestern.edu	
Jim	Collins	University of Texas Southwestern Medical Center	James J. Collins@utsouthwestern .edu	
Alice	Costain	University of Manchester	alice.costain@manchester.ac.uk	
Kyle	Cunningham	University of Glasgow	kyle.cunningham@glasgow.ac.uk	
Dick	Davis	University of Colorado	richard.davis@cuanschutz.edu	
Lida	Derevnina	University of Cambridge	ld645@cam.ac.uk	
Stephen	Doyle	Wellcome Sanger Institute	sd21@sanger.ac.uk	
Maria	Duque Correa	University of Cambridge	mad75@cam.ac.uk	
Jan	Dvorak	Czech University of Life Sciences	hdvorak76@outlook.com	
Moses	Egesa	MRC/UVRI and LSHTM Uganda	Moses.Egesa@mrcuganda.org	
Alexandra	Ehrens	University Hospital Bonn	aehrens@uni-bonn.de	
Hala	Fahs	New York University	hf750@nyu.edu	
Padraic	Fallon	Trinity College Dublin	pfallon@tcd.ie	
Kerstin	Fischer	Washington University School of Medicine	Kfischer@wustl.edu	
Peter	Fischer	Washington University School of Medicine	pufischer@wustl.edu	
Andy	Fraser	University of Toronto	andyfraser.utoronto@gmail.com	
Sandra	Gava	Oswaldo Cruz Foundation, Fiocruz	sandra.grossi@fiocruz.br	
Pedro	Gazzinelli- Guimaraes	NIAID/NIH	Pedro.gazzinelliguimaraes@nih. gov	
Niki	Gounaris	Imperial College London	k.gounaris@imperial.ac.uk	

Richard	Grencis	University of Manchester	richard.k.grencis@manchester.a
			c.uk
Christoph Grevelding		Justus Liebig University Giessen	Christoph.Grevelding@vetmed. uni-giessen.de
Dionysius	ysius Grigoriadis EMBL-EBI		digri@ebi.ac.uk
Kristin	Gunsalus	New York University	kcg1@nyu.edu
Amber	Hadermann	University of Antwerp	amber.hadermann@uantwerpe n.be
Simone	Haeberlein	Justus Liebig University Giessen	simone.haeberlein@vetmed.uni -giessen.de
Kelly	Hayes	University of Manchester	kelly.hayes@manchester.ac.uk
De'Broski	Herbert	University of Pennsylvania	debroski@vet.upenn.edu
James	Hewitson	York Biomedical Research Institute, Dept of Biology	james.hewitson@york.ac.uk
Cornelis	Hokke	Leiden University Medical Center	c.h.hokke@lumc.nl
Emma	Houlder	Leiden University Medical Center	e.l.houlder@lumc.nl
Vicky	Hunt	University of Bath	bs1vlh@bath.ac.uk
Wannaporn	Ittiprasert	George Washington University	wannaporni@gwu.edu
Ray	Kaplan	St George's University, West Indies	rkaplan@sgu.edu
Malcolm	Kennedy	University of Glasgow	malcolm.kennedy@glasgow.ac. uk
Anne	Lespine	INRAE, Toulouse	anne.lespine@inrae.fr
Xeusong	Li	Justus-Liebig-University, Giessen	Xuesong.Li@vetmed.uni- giessen.de
Lara	Linnemann	Bernhard Nocht Institute for Tropical Medicine	lara.linnemann@bnitm.de
Yuchen	Liu	University of Liverpool	Yuchen.Liu@liverpool.ac.uk
Maria Cristina	Loader	St George's University London	maria.loader@nhs.net
Xinxin	Luo	Karolinska Institutet	xinxin.luo@ki.se
Kate	Maclean	Malaghan Institute of Medical Research	kmaclean@malaghan.org.nz
Rick	Maizels	University of Glasgow	rick.maizels@glasgow.ac.uk
David	Mangelsdorf	University of Texas Southwestern Medical Center	davo.mango@utsouthwestern.edu
Javier	Mora	University of Costa Rica	javierfrancisco.mora@ucr.ac.cr
Marina	Moraes Mourão	FIOCRUZ- Fundação Oswaldo Cruz	mourao.marina@gmail.com
Max Frederik	Möscheid	Justus Liebig University Giessen	max.f.moescheid@bio.uni- giessen.de
Pia Franziska Marie	Naujack	Justus Liebig University Giessen	Pia.F.Naujack@vetmed.uni- giessen.de
Peter			pn@clin.au.dk
Thomas	Nutman	NIAID/NIH	tnutman@niaid.nih.gov
Oyebola	Oyesola	LPD/NIH	oyebola.oyesola@nih.gov

Marina	Papaiakovou	University of Cambridge	mp978@cam.ac.uk
Pedro	Papotto	University of Manchester	pedro.papotto@manchester.ac.uk
Daniel	Parsons	Kingston University, London	D.parsons@nhm.ac.uk
Amy	Pedersen	University of Edinburgh	amy.pedersen@ed.ac.uk
Laudine	Petralia	New England Biolabs	laudine.petralia@gmail.com
Georgios	Petrellis	University of Liege	gpetrellis@uliege.be
Fabio	Piano	New York University	fp1@nyu.edu
Nicolas	Pionnier	Manchester Metropolitan University	n.pionnier@mmu.ac.uk
Clarissa	Prazeres da Costa	Technical University Munich	clarissa.dacosta@tum.de
Rajalah Prabhu	Prince	Anna University, Chennai	princeprp@gmail.com
Ella	Reed	Cardiff University	ReedEK@cardiff.ac.uk
Tania	Rozario	University of Georgia	tania.rozario@uga.edu
Murray	Selkirk	Imperial College London	m.selkirk@imperial.ac.uk
Murilo	Sena Amaral	Instituto Butantan	murilo.amaral@butantan.gov.br
Shashi Prakash	Singh	University of Glasgow	shashi.singh@glasgow.ac.uk
Katherine	Smith	Cardiff University	smithk28@cardiff.ac.uk
Martina	Sombetzki	Rostock University Medical Center	martina.sombetzki@uni- rostock.de
Unnati	Sonawala	Crop Science Centre, University of Cambridge	us275@cam.ac.uk
Camila	Souza	National Institute of Allergy and Infectious	camila.deoliveirasilvaesouza@ni h.gov
Thomas	Spangenberg	Merck Global Health Institute, Eysins	thomas.spangenberg@merckgr oup.com
Daniel	Sprague	Medical College of Wisconsin	dsprague@mcw.edu
Lewis	Stevens	Wellcome Sanger Institute	ls30@sanger.ac.uk
Shannan	Summers	London School of Hygiene and Tropical Medicine	lsh1901810@lshtm.ac.uk
Mark	Viney (Liu)	University of Liverpool	Mark.Viney@liverpool.ac.uk
Bridgious	Walusimbi	MRC/UVRI & LSHTM Uganda Research Unit	bridgious.walusimbi@mrcugand a.org
Franziska	Winkelmann	Rostock University Medical Center	franziska.winkelmann@uni- rostock.de
Maria	Yazdanbakhsh	Leiden University Medical Center	M.Yazdanbakhsh@lumc.nl
Taoxun	Zhou	Huazhong Agricultural University	taoxunz@webmail.hzau.edu.cn
Isani Hubi	SRUC / The University of		i.h.zulfa@sms.ed.ac.uk
Laurens	Zwanenburg	Ghent University	Laurens.Zwanenburg@UGent.be

Through the generous support of our sponsors the following individuals were awarded travelling fellowships to attend the meeting:

Grace Ajakaye Sandra Gava Javier Mora Rajalah Prabhu Prince Bridgious Walusimbi Taoxun Zhou Adekunle Ajasin University, Akungba Akoko, Nigeria Oswaldo Cruz Foundation, Fiocruz University of Costa Rica Centre for Biotechnology Anna University, Chennai MRC/UVRI & LSHTM Uganda Research Unit Huazhong Agricultural University

PARASITIC HELMINTHS - NEW PERSPECTIVES IN BIOLOGY AND INFECTION -

PREVIOUS CONFERENCES IN THIS SERIES

Ι.	6-9 September 1997, Edinburgh, UK			
	'Parasitic Helminths from Genomes to Vaccines'			
II.	8-11 July 1999, Edinburgh, UK			
	'Parasitic Helminths from Genomes to Vaccines II'			
III.	14-19 September 2002, Hydra, Greece 'Molecular and Cellular Biology of Helminth Parasites III'			
	Special Issue of International Journal of Parasitology 33 (11): 1127-1302			
IV.	6-11 September 2005, Hydra, Greece			
	'Molecular and Cellular Biology of Helminth Parasites IV'			
	Special Issue of International Journal of Parasitology 36 (6): 615-733			
V.	12-17 September 2008, Hydra, Greece			
	'Molecular and Cellular Biology of Helminth Parasites V'			
VI.	5-10 September 2010, Hydra, Greece			
	'Molecular and Cellular Biology of Helminth Parasites VI'			
	Special Issue of Experimental Parasitology 132 (1): 1-102			
VII.	VII 2-7 September 2012, Hydra, Greece			
	'Molecular and Cellular Biology of Helminth Parasites VII'			
VIII.	VIII 1-6 September 2014, Hydra Greece			
	'Molecular and Cellular Biology of Helminth Parasites VIII'			
	Special Issue of Experimental Parasitology 158 (1): 1-60			
IX.	31 August – 5 September 2015, Hydra Greece			
	'Molecular and Cellular Biology of Helminth Parasites IX'			
Х.	4 – 9 September 2016, Hydra Greece			
	'Molecular and Cellular Biology of Helminth Parasites X'			
XI.	3-8 September 2017, Hydra Greece			
	'Molecular and Cellular Biology of Helminth Parasites XI'			
	Special Issue of International Journal of Parasitology 48 (5): 319-402			
XII.	2-7 September 2018, Hydra Greece			
	'Molecular and Cellular Biology of Helminths XII'			
XIII.	1-6 September 2019, Hydra, Greece			
	"Parasitic Helminths – New Perspectives in Biology and Infection"			
XIV.	28 August – 2 September 2022, Hydra, Greece			
	"Parasitic Helminths – New Perspectives in Biology and Infection"			
	Trends Talks Article, Trends in Parasitology 38 (12): 999-1007			
	https://doi.org/10.1016/j.pt.2022.09.013			